

# Small Molecule Inhibitors For Type III Receptor Tyrosine Kinases

Baratali Mashkani M.Sc.

A Thesis Submitted for the Degree of Doctor of Philosophy

> Supervisors: Prof. Leonie K. Ashman Assoc. Prof. Renate Griffith

**School of Biomedical Sciences and Pharmacy** 

Dec. 2010

#### Declaration

I hereby certify that the work embodied in this thesis is the results of original research contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library\*\*, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

\*\*Unless an Embargo has been approved for a determined period.

Baratali Mashkani

#### Acknowledgment

Firstly, I wish to thank my supervisors, Professor Leonie Ashman and Associate Professor Renate Griffith for giving me the opportunity to undertake this project and for their support and helpful suggestions during the course of this project and for their patience and tireless revising of this thesis.

A huge thank you to the past and present members of the Medical Biochemistry Laboratories, students, post-docs and academics as well as Research Support Unit officers and all those I may have not even noticed, for providing a friendly environment and all the assistance I needed during this project. Special thanks should go to Dr. Severine Roselli, Dr. Rosa Baleato, Mrs. Ellen Byrnes, Dr. Adam Odell, and Dr. Sean Geary for their friendship and teaching me English, molecular biology and cell culture techniques and how to use different instruments in the lab. Special thanks also go to Dr. Judith Weidenhofer and Mr. Richard Kahl for proof reading and for their valuable recommendations on preparation of the final version of this thesis. I must also thank Dr. Nikki Verrills and members of her lab for their assistance during my PhD.

I also greatly appreciate the help of the members of Cancer Research Unit specially Dr. Rick Thorne, and Dr. Charles De Bock. I would also like to acknowledge the help of Mr. Michael Brown and Dr. Iain MacDougall (Former PhD students in Renate's group at the University of Newcastle) as well as Mr. David Huthnance (from the University of Newcastle IT service) for their assistance in setting up the docking simulations.

In addition, I gratefully acknowledge financial assistance from the Ministry of Health and Medical Education, Iran in providing a PhD scholarship covering tuition fees and living expenses for the first 3.5 years as well as the University of Newcastle for an International Postgraduate Research Scholarship which covered tuition fees for Semester 1, 2010.

Finally, I must gratefully acknowledge the love and support I have received from my family during the long period of my studies from primary school through to PhD. I would like to dedicate this thesis to all of those doing their best in different fields and very often making sacrifices to make the world a better place for everyone.

## **Table of Contents**

| 1 | CHAPTER 1: OVERVIEW OF RECEPTOR TYROSINE KINASES: STRUCTURE AND FUNCTION |        |                                                              | 1    |
|---|--------------------------------------------------------------------------|--------|--------------------------------------------------------------|------|
|   | 1.1                                                                      | Intro  | DUCTION                                                      | 2    |
|   | 1.2                                                                      | CHARA  | ACTERISTICS OF RECEPTOR TYROSINE KINASES                     | 3    |
|   | 1.3                                                                      | Ligan  | DS FOR TYPE III RTKS: CSF-1 (FMS) AND FLT3L (FLT3)           | 6    |
|   | 1.4                                                                      | CHARA  | ACTERISTICS OF TYPE III RTKS                                 | 9    |
|   | 1.                                                                       | 4.1    | The extracellular domain                                     | 9    |
|   | 1.                                                                       | 4.2    | Transmembrane domain                                         | . 10 |
|   | 1.                                                                       | 4.3    | Kinase domain                                                | . 11 |
|   | 1.5                                                                      | CONTR  | ROL OF KINASE DOMAIN ACTIVITY                                | . 14 |
|   | 1.                                                                       | 5.1    | Autoregulation through the juxtamembrane region              | . 14 |
|   | 1.                                                                       | 5.2    | Autoregulation through the activation loop                   | . 16 |
|   | 1.                                                                       | 5.3    | Autoregulation through carboxy-terminal region               | . 17 |
|   | 1.6                                                                      | Астіу  | ATION OF RECEPTOR TYROSINE KINASES                           | . 17 |
|   | 1.7                                                                      | Signa  | L TRANSDUCTION BY TYPE III RECEPTOR TYROSINE KINASES         | . 19 |
|   | 1.8                                                                      | Atten  | UATION OF KINASE DOMAIN ACTIVITY                             | . 22 |
|   | 1.9                                                                      | Рнузіс | DLOGICAL AND PATHOLOGICAL FUNCTIONS OF FMS AND FLT3          | . 23 |
|   | 1.10                                                                     | ΤY     | ROSINE KINASES AS DRUG TARGETS                               | . 26 |
|   | 1.11                                                                     | Ne     | ED FOR DEVELOPMENT OF NEW SMALL MOLECULE INHIBITORS          | . 34 |
|   | 1.12                                                                     | Di     | SCOVERY OF NEW KINASE INHIBITORS                             | . 35 |
|   | 1.                                                                       | 12.1   | Ligand based virtual screening                               | . 37 |
|   | 1.                                                                       | 12.2   | Structure based virtual screening                            | . 38 |
|   | 1.                                                                       | 12.3   | Protein structures and homology models for virtual screening | . 41 |
|   | 1.13                                                                     | Ai     | MS AND RATIONALE OF THE PROJECT                              | . 46 |
| 2 | CH                                                                       | IAPTEI | R 2: MATERIALS AND METHODS                                   | . 49 |
|   | 2.1                                                                      | Overv  | /IEW OF THE MATERIALS AND METHODS                            | . 50 |
|   | 2.2                                                                      | Prepa  | RATION OF RNA AND CDNA ENCODING CSF1 AND FLT3L               | . 50 |
|   | 2.3                                                                      | Ampli  | FICATION OF CSF-1 AND FLT3L CODING REGIONS                   | . 52 |
|   | 2.4                                                                      | CLONI  | NG CSF-1 AND FLT3L CODING REGIONS INTO -T EASY VECTOR        | . 54 |
|   | 2.5                                                                      | TRANS  | FORMATION OF DH5A COMPETENT CELLS                            | . 56 |
|   | 2.6                                                                      | Plasm  | IID PROPAGATION AND SEQUENCING CSF-1 AND FLT3L               | . 56 |
|   | 2.7                                                                      | SUBCL  | ONING THE LIGANDS INTO <i>PPICZAA</i> EXPRESSION VECTOR      | . 57 |
|   | 2.8                                                                      | Ορτιν  | IIZATION OF PROTEIN EXPRESSION                               | . 59 |
|   | 2.9                                                                      | Large  | SCALE PREPARATION OF CSF-1 AND FLT3L                         | . 60 |
|   | 2.10                                                                     | Sτ     | IMULATION OF RECEPTOR PHOSPHORYLATION                        | . 61 |
|   | 2.11                                                                     | Su     | BCLONING FLT3 CONSTRUCTS INTO MSCV-IRES-GFP VECTOR           | . 63 |

|   | 2.12        | PA       | ACKAGING DNA INTO RETROVIRAL PARTICLES                                         | 67       |
|---|-------------|----------|--------------------------------------------------------------------------------|----------|
|   | 2.13        | IN       | FECTION OF THE FDC-P1 PARENT CELLS WITH RETROVIRAL PARTICLES                   | 68       |
|   | 2.14        | Se       | ELECTION OF CELLS EXPRESSING FMS AND FLT3                                      | 69       |
|   | 2.15        | E١       | ALUATION OF FMS AND FLT3 EXPRESSION ON FDC-P1 CELLS                            | 70       |
|   | 2.          | 15.1     | Flow Cytometry                                                                 | 70       |
|   | 2.          | 15.2     | Stimulation of cell growth in factor dependent cell lines                      | 71       |
|   | 2.          | 15.3     | Receptor phosphorylation in response to CSF-1 and FLT3L                        | 72       |
|   | 2.16        | C        | ELL PROLIFERATION INHIBITION BY SMALL MOLECULE KINASE INHIBITORS               | 72       |
|   | 2.17        | IN       | HIBITION OF RECEPTOR AUTOPHOSPHORYLATION BY KINASE INHIBITORS                  | 73       |
|   | 2.18        | Se       | LECTION OF STRUCTURES AND DOCKING METHODS                                      | 74       |
|   | 2.19        | Pf       | REPARATION OF FMS AND FLT3 HOMOLOGY MODELS                                     | 75       |
|   | 2.20        | Pf       | REPARATION OF PROTEIN AND LIGAND FOR DOCKING                                   | 76       |
|   | 2.21        | 0        | PTIMIZATION AND VALIDATION OF DOCKING PROCEDURE                                | 77       |
| 3 | СН          | APTEF    | 3: ESTABLISHMENT OF CELL BASED ASSAY SYSTEM FOR TESTING SMALL MOL              | ECULE    |
|   | INF         | нвітс    | PRS                                                                            | 79       |
|   | 2.4         | 0        |                                                                                | 00       |
|   | 3.1         | OVER     |                                                                                | 80       |
|   | 3.2         | SELEC    |                                                                                | 80       |
|   | 3.3         | CLONI    | NG CDINA ENCODING ACTIVE FRAGMENTS OF CSF-1 AND FLT3L                          | 82<br>or |
|   | 3.4<br>2 E  | SUBCI    | CONING CSF-1 AND FLI3E FRAGMENTS INTO THE PPICZAA VECTOR.                      | <br>00   |
|   | 3.5<br>2.6  | EXPRE    | SSION OF CSF-I AND FLISE IN P. PASTORIS AND OPTIMIZATION OF PROTEIN PRODUCTION | 00       |
|   | 3.0<br>2.7  | BIOLO    |                                                                                | 95       |
|   | 3.7<br>2.0  | TRAN:    |                                                                                | 90       |
|   | 3.0<br>2.0  | СНАК     |                                                                                | 97       |
|   | 5.9<br>2 10 |          |                                                                                | 100      |
|   | 2 11        | 50<br>E\ |                                                                                | 107      |
|   | 3.11        | L/       |                                                                                | 100      |
|   | 3.12        | Pr       | TRACELEDEAR AND CELE SOM ACE STAINING OF TETS                                  | 111      |
|   | 3.13        | C (      |                                                                                | 115      |
|   | 3.11        | 14 1     | Expression of CSE-1 and ELT3 ligand in Pichia nastoris                         | 115      |
|   | 3           | 14.2     | Expression of human EMS and ELT3 in EDC-P1 cells                               | 117      |
|   | 3           | 14.2     | Expression of HMS FLT3-WT and mutants in EDC-P1 cells                          | 119      |
|   | Э.          |          |                                                                                |          |
| 4 | CH          | IAPTE    | R 4: HOMOLOGY MODELLING AND VALIDATION OF DOCKING PROCEDURE                    | 121      |
|   | 4.1         | Intro    | DUCTION                                                                        | 122      |
|   | 4.2         | QUAL     | ITY ASSESSMENT FOR CRYSTAL STRUCTURES AND HOMOLOGY MODELS                      | 123      |
|   | 4.3         | Ορτιν    | IIZATION OF THE DOCKING PROCEDURE                                              | 126      |
|   |             |          |                                                                                |          |

|   | 4.4 | Valid | ATION OF THE DOCKING PROCEDURE                                  |     |
|---|-----|-------|-----------------------------------------------------------------|-----|
|   | 4.5 | Солс  | LUSIONS                                                         | 132 |
| 5 | С   | НАРТЕ | R 5: INHIBITION OF COLONY STIMULATING FACTOR-1 RECEPTOR (FMS)   |     |
|   | 5.1 | Intro | DUCTION                                                         |     |
|   | 5.2 | Dоск  | ING SMALL MOLECULE INHIBITORS INTO THE <b>FMS</b> KINASE DOMAIN | 135 |
|   | 5   | 5.2.1 | СЕР701                                                          | 136 |
|   | 5   | 5.2.2 | РКС412                                                          | 138 |
|   | 5   | 5.2.3 | Imatinib                                                        | 139 |
|   | 5   | 5.2.4 | Dacatinib                                                       | 141 |
|   | 5   | 5.2.5 | Sunitinib                                                       | 142 |
|   | 5.3 | Ілнів | TION OF FD-FMS CELL PROLIFERATION                               |     |
|   | 5.4 | Ілнів | TION OF FMS PHOSPHORYLATION                                     |     |
|   | 5.5 | Солс  | LUSIONS                                                         |     |
| 6 | С   | HAPTE | R 6: INHIBITION OF FMS-LIKE TYROSINE KINASE 3 (FLT3)            | 151 |
|   | 6.1 | INTRO | DUCTION                                                         | 152 |
|   | 6.2 | Dоск  | ING SMALL MOLECULE INHIBITORS INTO THE FLT3 KINASE DOMAIN       | 153 |
|   | 6   | 5.2.1 | CEP701                                                          | 153 |
|   | 6   | 5.2.2 | Dacatinib                                                       | 156 |
|   | 6   | 5.2.3 | Imatinib                                                        | 157 |
|   | 6   | 5.2.4 | РКС412                                                          | 159 |
|   | 6   | 5.2.5 | Sunitinib                                                       | 161 |
|   | 6.3 | Ινηιβ | TION OF FD-FLT3 CELL PROLIFERATION                              |     |
|   | 6   | 5.3.1 | Inhibition of FD-FLT3-WT cell proliferation                     | 164 |
|   | 6   | 5.3.2 | Inhibition of FD-FLT3-ITD cell proliferation                    | 165 |
|   | 6   | 5.3.3 | Inhibition of FD-FLT3-D835V/Y cell proliferation                | 166 |
|   | 6.4 | Ілнів | TION OF FLT3 PHOSPHORYLATION                                    | 167 |
|   | 6   | 5.4.1 | Inhibition of FLT3-WT phosphorylation                           | 168 |
|   | 6   | 5.4.2 | Inhibition of FLT3-ITD phosphorylation                          | 169 |
|   | 6   | 5.4.3 | Inhibition of FLT3-D835V/Y phosphorylation                      | 172 |
|   | 6.5 | Conc  | LUSIONS                                                         | 173 |
| 7 | С   | НАРТЕ | R 7: GENERAL DISCUSSION                                         | 178 |
|   | 7.1 | INTRO | DUCTION                                                         |     |
|   | 7.2 | CHAR  | ACTERISTICS OF FMS AND FLT3                                     | 182 |
|   | 7.3 | Struc | TURE-ACTIVITY RELATIONSHIP OF SMALL MOLECULE INHIBITORS         |     |
|   | 7.4 | Desig | N OF SELECTIVE SMALL MOLECULES FOR RECEPTOR TYROSINE KINASES    |     |

| 8 | RI  | FERENCES          | 193   |
|---|-----|-------------------|-------|
|   | 7.5 | FUTURE DIRECTIONS | . 192 |

#### Abstract

Colony stimulating Factor-1 Receptor (CSF-1R, FMS) and FMS-like Tyrosine Kinase-3 (FLT3) are members of the type III receptor tyrosine kinase (RTK) family. They have been implicated in a wide range of physiological and pathological processes including cancer and inflammatory diseases. Therefore blockade of their kinase activity using small molecule inhibitors (SMIs) may be a helpful treatment strategy for diseases associated with aberrant expression of FMS and FLT3. In this study, a cellular system for evaluation of SMIs was established by separate expression of human FMS and FLT3 in murine factor dependent FDC-P1 early myeloid cells. cDNAs encoding wild-type (WT) human FMS and FLT3 as well as leukaemia-associated constitutively active mutant forms of FLT3 (internal tandem duplication (ITD), D835V and D835Y) in the expression vector MSCV-IRES-GFP were introduced into FDC-P1 cells by retroviral transduction. Transduced cells were selected by Fluorescence-activated cell sorting (FACS) for green fluorescent protein GFP and growth in CSF-1 (also known as M-CSF), FLT3 ligand (FLT3L) or, in the case of FLT3 mutants, in the absence of growth factor. The coding regions for the CSF-1 and FLT3L were cloned from RNA extracted from K562, human erythroleukaemia cells and recombinant growth factors were produced in the yeast, Pichia pastoris.

Several known SMIs of one or more Type III RTKs were evaluated for inhibition of FMS and FLT3 driven cell proliferation. Imatinib, dasatinib and sunitinib are potent inhibitors of c-KIT, while PKC412 and CEP701 are FLT3 inhibitors. The potency and selectivity of these SMIs were evaluated by inhibition of cell growth in presence of either mouse granulocyte macrophage colony-stimulating factor GM-CSF (control) or specific human growth factors (CSF-1 and FLT3L) and confirmed by inhibition of FMS and FLT3 phosphorylation upon stimulation by their cognate ligands. Each of these SMIs inhibited FMS kinase activity while FLT3 kinase (both WT and mutants) was inhibited by CEP701, PKC412 and to some degree by sunitinib, but not imatinib or dasatinib. The binding modes of the SMIs were predicted by molecular docking into homology models based on crystal structures of related kinases. Because kinase domains adopt different conformations in the inactive, active and inhibited states, multiple models of each kinase were evaluated. The binding mode data were correlated with selectivity and potency of the SMIs.

Each of the small molecule inhibitors studied in this project represent a unique mode of activity against kinases, but in general they can be classified into three main categories. Firstly, molecules interacting mainly with the catalytic area (such as imatinib) taking advantage of the relatively unique substrate recognition site to be relatively selective, but affected adversely by the conformational switch during activation of the kinase domain. Secondly, molecules which interact exclusively with the ATP binding area (such as PKC412 and CEP701) can be effective on both active and inactive forms of kinases by taking advantage of binding to the area with least conformational changes during activation. However, it comes at the cost of less selectivity as this area is widely conserved among different types of kinases. Dasatinib, on the other hand, seems to have benefited from a kind of balanced interaction with both of these areas enabling it to be potent as well as relatively selective for the kinases with a threonine as gate-keeper residue. These examples show that extension of the purinelike core structure is required for high potency; otherwise the inhibitor (a molecule such as sunitinib) will not be able to compete with high concentration of ATP for binding to the active conformation of kinase. Extensions toward the ribose and phosphate groups (in molecules such as PKC412 and CEP701) result in increased potency, but decreased selectivity. To achieve higher potency and relative selectivity at the same time, the core structure should be extended toward the catalytic area (i.e. dasatinib). However, it should be limited to the vicinity of gate-keeper residue; otherwise the molecule will be vulnerable to the conformational changes during activation as explained for imatinib.

The implications for design of SMIs of tyrosine kinases are discussed. Since the catalytic region is less stringently conserved and more influenced by conformational changes on activation, there is a high possibility of point mutations giving rise to resistance against SMIs targeting this region. If highly selective inhibitors are required, targeting of the catalytic area will be the choice, but if the aim is preventing or overcoming drug resistance in cancers due to mutations in the catalytic area (e.g. T670I in KIT) or strongly favouring the active conformation of the kinase domain (e.g. D816V in KIT or D835V/Y in FLT3), then the hinge region should be considered as the target area. It also will be possible to balance the selectivity and the potency by designing molecules that bridge the catalytic area and the hinge region. These findings will help in the design of new SMIs against the kinases according to each specific problem.

# **List of Figures**

| Figure 1-1: Classification of the receptor tyrosine kinases based on structure of the extracellular ligand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| binding domain (Blume-Jensen and Hunter 2001):4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Figure 1-2: Different isoforms of human CSF-1 are produced by alternative splicing of mRNA7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Figure 1-3: Alternative splicing of mRNA results in production of different isoforms of human FLT3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ligand8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Figure 1-4: Different conformations of KIT12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure 1-5: Structure of KIT kinase bound to ADP (1PKG (Mol, et al 2003))13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Figure 1-6: Structures of some small molecule inhibitors of tyrosine kinases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure 2-1: Sequencing plan for <i>FLT3</i> constructs67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Figure 3-1: Map of the <i>pPICZαA</i> expression vector81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Figure 3-2: Electrophoresis of total RNA extracted from K562 cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Figure 3-3: Alignment of sequenced sample (NUBM20) cloned into <i>pGEM-T</i> Easy vector with reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| sequence of human CSF-1 (NM_172212).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Figure 3-4: Sequence alignment of FLT3L fragment with reference sequence of human FLT3L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (NM_001459)84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Figure 3-5: Amplification of the <i>FLT3L</i> fragment for cloning into the <i>pPICZaA</i> expression vector85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Figure 3-6: Screening for the CSF-1 fragment in different clones of plasmid DNA extracted from DH5 $lpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Figure 3-6: Screening for the CSF-1 fragment in different clones of plasmid DNA extracted from DH5α cells transformed with the ligation mix of <i>pPICZαA</i> and <i>CSF-1</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>Figure 3-6: Screening for the CSF-1 fragment in different clones of plasmid DNA extracted from DH5α cells transformed with the ligation mix of <i>pPICZαA</i> and <i>CSF-1</i>.</li> <li>Figure 3-7: PCR screening for the FLT3L insert.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>Figure 3-6: Screening for the CSF-1 fragment in different clones of plasmid DNA extracted from DH5α cells transformed with the ligation mix of <i>pPICZαA</i> and <i>CSF-1</i></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>Figure 3-6: Screening for the CSF-1 fragment in different clones of plasmid DNA extracted from DH5α cells transformed with the ligation mix of <i>pPICZαA</i> and <i>CSF-1</i></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>Figure 3-6: Screening for the CSF-1 fragment in different clones of plasmid DNA extracted from DH5α cells transformed with the ligation mix of <i>pPICZαA</i> and <i>CSF-1</i></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>Figure 3-6: Screening for the CSF-1 fragment in different clones of plasmid DNA extracted from DH5α cells transformed with the ligation mix of <i>pPICZαA</i> and <i>CSF-1</i></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>Figure 3-6: Screening for the CSF-1 fragment in different clones of plasmid DNA extracted from DH5α cells transformed with the ligation mix of <i>pPICZαA</i> and <i>CSF-1</i>.</li> <li>86</li> <li>Figure 3-7: PCR screening for the FLT3L insert.</li> <li>87</li> <li>Figure 3-8: The result of the BLAST search of the CSF-1 insert cloned into <i>pPICZαA</i> vector (NUBMD029.abd) sequenced using α-factor and 3'AOX-1 primers.</li> <li>87</li> <li>Figure 3-9: The result of a BLAST search of the FLT3L insert cloned into <i>pPICZαA</i> vector.</li> <li>88</li> <li>Figure 3-10: Circular map of <i>pPICZαA</i> vector with <i>CSF-1</i> or <i>FLT3L</i> coding region.</li> <li>89</li> <li>Figure 3-11: linearization of the <i>pPICZαA</i> empty vector as well as the <i>pPICZαA</i>-CSF-1 and -FLT3L</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>Figure 3-6: Screening for the CSF-1 fragment in different clones of plasmid DNA extracted from DH5α cells transformed with the ligation mix of <i>pPICZαA</i> and <i>CSF-1</i>.</li> <li>86</li> <li>Figure 3-7: PCR screening for the FLT3L insert.</li> <li>87</li> <li>Figure 3-8: The result of the BLAST search of the CSF-1 insert cloned into <i>pPICZαA</i> vector (NUBMD029.abd) sequenced using α-factor and 3'AOX-1 primers.</li> <li>87</li> <li>Figure 3-9: The result of a BLAST search of the FLT3L insert cloned into <i>pPICZαA</i> vector.</li> <li>88</li> <li>Figure 3-10: Circular map of <i>pPICZαA</i> vector with <i>CSF-1</i> or <i>FLT3L</i> coding region.</li> <li>89</li> <li>Figure 3-11: linearization of the <i>pPICZαA</i> empty vector as well as the <i>pPICZαA</i>-CSF-1 and -FLT3L constructs using the Pmel restriction enzyme.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>Figure 3-6: Screening for the CSF-1 fragment in different clones of plasmid DNA extracted from DH5α cells transformed with the ligation mix of <i>pPICZαA</i> and <i>CSF-1</i>.</li> <li>86</li> <li>Figure 3-7: PCR screening for the FLT3L insert.</li> <li>87</li> <li>Figure 3-8: The result of the BLAST search of the CSF-1 insert cloned into <i>pPICZαA</i> vector (NUBMD029.abd) sequenced using α-factor and 3'AOX-1 primers.</li> <li>87</li> <li>Figure 3-9: The result of a BLAST search of the FLT3L insert cloned into <i>pPICZαA</i> vector.</li> <li>88</li> <li>Figure 3-10: Circular map of <i>pPICZαA</i> vector with <i>CSF-1</i> or <i>FLT3L</i> coding region.</li> <li>89</li> <li>Figure 3-11: linearization of the <i>pPICZαA</i> empty vector as well as the <i>pPICZαA</i>-CSF-1 and -FLT3L constructs using the Pmel restriction enzyme.</li> <li>90</li> <li>Figure 3-12: Time course optimization for CSF-1 production.</li> </ul>                                                                                                                                                                                                                                                                                                                                                      |
| Figure 3-6: Screening for the CSF-1 fragment in different clones of plasmid DNA extracted from DH5α         cells transformed with the ligation mix of <i>pPICZαA</i> and <i>CSF-1</i> .         86         Figure 3-7: PCR screening for the FLT3L insert.         87         Figure 3-8: The result of the BLAST search of the CSF-1 insert cloned into <i>pPICZαA</i> vector         (NUBMD029.abd) sequenced using α-factor and 3'AOX-1 primers.         87         Figure 3-9: The result of a BLAST search of the FLT3L insert cloned into <i>pPICZαA</i> vector.         88         Figure 3-10: Circular map of <i>pPICZαA</i> vector with <i>CSF-1</i> or <i>FLT3L</i> coding region.         89         Figure 3-11: linearization of the <i>pPICZαA</i> empty vector as well as the <i>pPICZαA</i> -CSF-1 and -FLT3L constructs using the Pmel restriction enzyme.         90         Figure 3-12: Time course optimization for CSF-1 production.         91         Figure 3-13: Expression of CSF-1.                                                                                                                                                                                                                                                                                                               |
| Figure 3-6: Screening for the CSF-1 fragment in different clones of plasmid DNA extracted from DH5α cells transformed with the ligation mix of <i>pPICZαA</i> and <i>CSF-1</i> .       86         Figure 3-7: PCR screening for the FLT3L insert.       87         Figure 3-8: The result of the BLAST search of the CSF-1 insert cloned into <i>pPICZαA</i> vector (NUBMD029.abd) sequenced using α-factor and 3'AOX-1 primers.       87         Figure 3-9: The result of a BLAST search of the FLT3L insert cloned into <i>pPICZαA</i> vector.       88         Figure 3-9: The result of a BLAST search of the FLT3L insert cloned into <i>pPICZαA</i> vector.       88         Figure 3-10: Circular map of <i>pPICZαA</i> vector with <i>CSF-1</i> or <i>FLT3L</i> coding region.       89         Figure 3-11: linearization of the <i>pPICZαA</i> empty vector as well as the <i>pPICZαA</i> -CSF-1 and -FLT3L constructs using the Pmel restriction enzyme.       90         Figure 3-12: Time course optimization for CSF-1 production.       91         Figure 3-13: Expression of CSF-1.       92         Figure 3-14: Western blot analysis of FLT3L       93                                                                                                                                                      |
| Figure 3-6: Screening for the CSF-1 fragment in different clones of plasmid DNA extracted from DH5α cells transformed with the ligation mix of <i>pPICZαA</i> and <i>CSF-1</i> .       86         Figure 3-7: PCR screening for the FLT3L insert.       87         Figure 3-8: The result of the BLAST search of the CSF-1 insert cloned into <i>pPICZαA</i> vector (NUBMD029.abd) sequenced using α-factor and 3'AOX-1 primers.       87         Figure 3-9: The result of a BLAST search of the FLT3L insert cloned into <i>pPICZαA</i> vector.       88         Figure 3-9: The result of a BLAST search of the FLT3L insert cloned into <i>pPICZαA</i> vector.       88         Figure 3-10: Circular map of <i>pPICZαA</i> vector with <i>CSF-1</i> or <i>FLT3L</i> coding region.       89         Figure 3-11: linearization of the <i>pPICZαA</i> empty vector as well as the <i>pPICZαA</i> -CSF-1 and -FLT3L constructs using the PmeI restriction enzyme.       90         Figure 3-12: Time course optimization for CSF-1 production.       91         Figure 3-13: Expression of CSF-1.       92         Figure 3-14: Western blot analysis of FLT3L       93         Figure 3-15: Codon frequency in human CSF-1 and FLT3L fragments normalized to <i>P. pastoris</i> .       94                                  |
| Figure 3-6: Screening for the CSF-1 fragment in different clones of plasmid DNA extracted from DH5α         cells transformed with the ligation mix of <i>pPICZαA</i> and <i>CSF-1</i> .         86         Figure 3-7: PCR screening for the FLT3L insert.         87         Figure 3-8: The result of the BLAST search of the CSF-1 insert cloned into <i>pPICZαA</i> vector         (NUBMD029.abd) sequenced using α-factor and 3'AOX-1 primers.         87         Figure 3-9: The result of a BLAST search of the FLT3L insert cloned into <i>pPICZαA</i> vector.         88         Figure 3-10: Circular map of <i>pPICZαA</i> vector with <i>CSF-1</i> or <i>FLT3L</i> coding region.         89         Figure 3-11: linearization of the <i>pPICZαA</i> empty vector as well as the <i>pPICZαA</i> -CSF-1 and -FLT3L<br>constructs using the Pmel restriction enzyme.         90         Figure 3-13: Expression of CSF-1.         91         Figure 3-14: Western blot analysis of FLT3L         93         Figure 3-15: Codon frequency in human CSF-1 and FLT3L fragments normalized to <i>P. pastoris</i> .         94         Figure 3-16: Sequence of the FLT3L fragment showing individual codons.                                                                                                            |
| Figure 3-6: Screening for the CSF-1 fragment in different clones of plasmid DNA extracted from DH5α         cells transformed with the ligation mix of <i>pPICZαA</i> and <i>CSF-1</i> .         86         Figure 3-7: PCR screening for the FLT3L insert.         87         Figure 3-8: The result of the BLAST search of the CSF-1 insert cloned into <i>pPICZαA</i> vector         (NUBMD029.abd) sequenced using α-factor and 3'AOX-1 primers.         87         Figure 3-9: The result of a BLAST search of the FLT3L insert cloned into <i>pPICZαA</i> vector.         88         Figure 3-10: Circular map of <i>pPICZαA</i> vector with <i>CSF-1</i> or <i>FLT3L</i> coding region.         89         Figure 3-11: linearization of the <i>pPICZαA</i> empty vector as well as the <i>pPICZαA</i> -CSF-1 and -FLT3L constructs using the PmeI restriction enzyme.         90         Figure 3-12: Time course optimization for CSF-1 production.         91         Figure 3-14: Western blot analysis of FLT3L         93         Figure 3-15: Codon frequency in human CSF-1 and FLT3L fragments normalized to <i>P. pastoris</i> .         94         Figure 3-16: Sequence of the FLT3L fragment showing individual codons.         94         Figure 3-17: biological activity of recombinant CSF-1 and FLT3L. |

| Figure 3-19: Expression of GFP and FMS on the FD-FMS cells97                                             |
|----------------------------------------------------------------------------------------------------------|
| Figure 3-20: Phosphorylation of FMS protein on FD-FMS cells upon stimulation with CSF-1                  |
| Figure 3-21: Cell proliferation of FDC-P1 parent (A) and FD-FMS cells (B) in presence of hCSF-1 and      |
| mGM-CSF                                                                                                  |
| Figure 3-22: Comparison of FD-FMS cell growth in response to <i>P. pastoris</i> and commercial CSF-1 100 |
| Figure 3-23: Partial map of the MSCV-FMS-IRES-GFP construct                                              |
| Figure 3-24: Restriction enzyme digestion products of MSCV-FMS-IRES-GFP                                  |
| Figure 3-25: Purification of the MSCV-IRES-GFP vector and the FLT3 sequences                             |
| Figure 3-26: PCR screening for <i>FLT3</i> 104                                                           |
| Figure 3-27: Sequence alignment of FLT3 constructs                                                       |
| Figure 3-28: Expression of FLT3 and GFP in FDC-P1 cells analyzed by 2-colour flow cytometry              |
| Figure 3-29: Immuno-staining of FLT3 in fixed and fixed-permeabilised FD-FLT3 cells                      |
| Figure 3-30: Statistics of FLT3 expression in FD-FLT3 cells.                                             |
| Figure 3-31: Cell proliferation of FDC-P1 parent, FD-FMS and FD-FLT3 cell lines in growth factor-free    |
| media (A), in response to mGM-CSF (B) or FLT3L (C)                                                       |
| Figure 3-32: FLT3 expression and phosphorylation in FD-FLT3 cell lines                                   |
| Figure 4-1: Residues in disallowed regions according to Ramachandran plots                               |
| Figure 4-2: Optimization of the docking procedure                                                        |
| Figure 4-3: Docking imatinib back into the KIT crystal structure (1T46)                                  |
| Figure 4-4: Interactions of docked arylamide molecule with the FMS crystal structure (2I1M)              |
| Figure 4-5: Interactions of docked dacatinib into the 2GQG crystal structure of Abl kinase               |
| Figure 4-6: Redocking sunitinib back into KIT crystal structure 3G0E                                     |
| Figure 5-1: Structures of small molecule inhibitors136                                                   |
| Figure 5-2: CEP701 molecule docked into inactive (A) and active (B) conformations of FMS                 |
| Figure 5-3: PKC412 docked into FMS139                                                                    |
| Figure 5-4: A: Docking imatinib into the FMS model built based on 1T46                                   |
| Figure 5-5: Dacatinib docked into the FMS model built based on the Abl kinase structure 2GQG 142         |
| Figure 5-6: Sunitinib docked into the FMS model based on KIT crystal structure 3GOE143                   |
| Figure 5-7: Effect of small molecule inhibitors on proliferation of FD-FMS cells                         |
| Figure 5-8: Inhibition of CSF-1-dependent FMS autophosphorylation by small molecule inhibitors 146       |
| Figure 5-9: Effect of the SFK inhibitor, SU6656, on CSF-1-dependent FMS autophosphorylation147           |
| Figure 6-1: Docking CEP701 into different FLT3 conformations built using homology modelling 155          |
| Figure 6-2: Docking dacatinib into different FLT3 conformations built using homology modelling 157       |

| Figure 6-3: Docking imatinib into different FLT3 conformations built using homology modelling 159  |
|----------------------------------------------------------------------------------------------------|
| Figure 6-4: Docking PKC412 into different FLT3 conformations built using homology modelling 160    |
| Figure 6-5: Docking sunitinib into different FLT3 conformations built using homology modelling 162 |
| Figure 6-6: Inhibition of FD-FLT3-WT cell proliferation by small molecule kinase inhibitors        |
| Figure 6-7: Inhibition of FD-FLT3-ITD cell proliferation by small molecule kinase inhibitors       |
| Figure 6-8: Inhibition of FD-FLT3-D835V cell proliferation by small molecule kinase inhibitors     |
| Figure 6-9: Inhibition of FD-FLT3-D835Y cell proliferation by small molecule kinase inhibitors     |
| Figure 6-10: Inhibition of FLT3-WT auto-phosphorylation by small molecule inhibitors               |
| Figure 6-11: Inhibition of FLT3-ITD kinase domain phosphorylation by small molecule inhibitors171  |
| Figure 6-12: Inhibition of FLT3 (D835V and –D835Y mutants) phosphorylation CEP701                  |
| Figure 7-1: Superimposition of ADP from the KIT active conformation onto docked poses of CEP701,   |
| PKC412, sunitinib, imatinib, and dasatinib into FMS and FLT3 kinase domains                        |

## List of Tables

| Table 1-1: Small molecule inhibitors effective on FLT3 and FMS                                               |
|--------------------------------------------------------------------------------------------------------------|
| Table 1-2: Crystal structures of kinase and extracellular domains of FMS, FLT3 and KIT                       |
| Table 2-1: Sequence of different primers used for cloning human CSF-1 and FLT3 ligand                        |
| Table 2-2: Primers used for FLT3 and FMS sequencing         66                                               |
| Table 4-1: Homology models of FMS, FLT3 and KIT123                                                           |
| Table 4-2: Statistical analysis of Ramachandran plots for all template crystal structures and homology       |
| models                                                                                                       |
| Table 4-3: Further validation analysis as determined in Accelrys Discovery Studio,                           |
| Table 4-4: Summary of docking validation results.         133                                                |
| Table 5-1: Summarized results of docking small molecule inhibitors into FMS                                  |
| Table 5-2: Inhibition of FD-FMS cells proliferation by small molecule inhibitors.                            |
| Table 6-1: Summary of docking results for CEP701 into different conformations of FLT3                        |
| Table 6-2: Summary of docking results for dacatinib into different conformations of FLT3                     |
| Table 6-3: Summary of docking results for imatinib into different conformations of FLT3                      |
| Table 6-4: Summary of docking results for PKC412 into different conformations of FLT3                        |
| Table 6-5: Summary of docking results for sunitinib into different conformations of FLT3                     |
| Table 6-6: Comparison of $EC_{50}$ value of the small molecules for inhibition of cell growth of FD-FLT3-WT  |
| in the presence of either GM-CSF or FLT3L                                                                    |
| Table 6-7: Comparison of $EC_{50}$ value of the small molecules for inhibition of cell growth of FD-FLT3-ITD |
| in the presence of either GM-CSF or FLT3L165                                                                 |
| Table 6-8: Comparison of $EC_{so}$ value (nM) of the small molecules for inhibition of cell growth of FD-    |
| FLT3- D835V/Y mutants in the presence of either GM-CSF or FLT3L                                              |
| Table 6-9: Different residues of FLT3 which are expected to be involved in interactions with small           |
| molecule inhibitors based on docking results from different clusters                                         |
| Table 7-1: Differences between residues in FMS, FLT3 and KIT in the surface of cleft between N- and C-       |
| terminal lobes                                                                                               |

## List of abbreviations

| Abbreviation | Description                                                         | Synonyms                                           |
|--------------|---------------------------------------------------------------------|----------------------------------------------------|
| AB           | Acidic Box                                                          |                                                    |
| ADP          | Adenosine Di-Phosphate                                              |                                                    |
| A-loop       | Activation loop                                                     |                                                    |
| AML          | Acute myelogenous leukemia                                          |                                                    |
| Arg          | Arginine                                                            | R                                                  |
| Asn          | Asparagine                                                          | Ν                                                  |
| Asp          | Aspartic acid                                                       | D                                                  |
| ATP          | Adenosine Tri-Phosphate                                             |                                                    |
| Axl          | a Tyro3 PTK                                                         |                                                    |
| CadhD        | Cadherin-Like Domain                                                |                                                    |
| CML          | Chronic myelogenous leukemia                                        |                                                    |
| CRD          | Cysteine-Rich Domain                                                |                                                    |
| CSF-1        | Colony Stimulating Factor-1                                         | M-CSF, Macrophage –<br>Colony Stimulating Factor   |
| Cys          | Cysteine                                                            | С                                                  |
| DAG          | Diacylglycerol                                                      |                                                    |
| DC           | dendritic cell                                                      |                                                    |
| DDR          | Discoidin Domain Receptor                                           |                                                    |
| DiscD        | Discoidin-like Domain                                               |                                                    |
| EGFD         | Epidermal Growth Factor-like Domain                                 |                                                    |
| EGFR         | Epidermal Growth Factor Receptor                                    | HER, Erb                                           |
| EphR         | Ephrin Receptor                                                     |                                                    |
| FGFR         | Fibroblast Growth Factor Receptor                                   |                                                    |
| FLT3         | FMS-like (related) Tyrosine Kinase 3                                | FLK2, CD135, Stem cell<br>tyrosine kinase 1 (STK1) |
| FLT3L        | FLT3 ligand                                                         | SL Cytokine                                        |
| FMS          | Human Homolog of McDonough Feline<br>Sarcoma Viral (v-FMS) Oncogene | CSF-1 Receptor, CD115                              |
| FNIII        | Fibronectin Type III-Like Domain                                    |                                                    |
| GIST         | gastrointestinal stromal tumours                                    |                                                    |
| Glu          | Glutamic acid                                                       | Е                                                  |
| Gly          | Glycine                                                             | G                                                  |
| H-bond       | Hydrogen-bond                                                       |                                                    |
| HGFR         | Hepatocyte Growth Factor Receptor                                   |                                                    |
| HTS          | High-Throughput Screening                                           |                                                    |
| IgD          | Immunoglobulin-like Domain                                          |                                                    |
| Ile          | Isoleucine                                                          | Ι                                                  |

| InsR              | Insulin Receptor                                                  |                                                 |
|-------------------|-------------------------------------------------------------------|-------------------------------------------------|
| ITD               | Internal Tandem Duplication                                       |                                                 |
| JM                | Juxtamembrane                                                     |                                                 |
| KIT               | Stem Cell Factor Receptor                                         | Mast/Stem Cell Growth<br>Factor Receptor, CD117 |
| KLG/CCK           | Colon Carcinoma Kinase                                            |                                                 |
| KrinD             | Kringle-like Domain                                               |                                                 |
| LMR               | Lemur                                                             |                                                 |
| LRD               | Leucine-Rich Domain.                                              |                                                 |
| LTK               | Leukocyte Tyrosine Kinase                                         |                                                 |
| Lys               | Lysine                                                            | K                                               |
| Met               | Methionine                                                        | М                                               |
| MMP               | metalloproteinases                                                |                                                 |
| MuSK              | Muscle-Specific Kinase                                            |                                                 |
| NF-1              | neurofibromin                                                     |                                                 |
| NGFR              | Nerve Growth Factor Receptor                                      |                                                 |
| P. pastoris       | Pichia pastoris                                                   |                                                 |
| PDB               | Protein Data Bank                                                 |                                                 |
| PDGFR             | Platelet-Derived Growth Factor Receptor                           |                                                 |
| Phe               | Phenylalanine                                                     | F                                               |
| PI3K              | phosphoinositide-3-kinase                                         |                                                 |
| ΡLCγ              | phospholipase Cγ                                                  |                                                 |
| PLD               | phospholipase D                                                   |                                                 |
| P-loop            | Nucleotide binding loop                                           |                                                 |
| PtdIns(4,5)P<br>2 | phosphatidylinositol-4,5-bisphosphate                             |                                                 |
| RMSD              | root mean square deviation                                        |                                                 |
| ROR               | Receptor Orphan                                                   |                                                 |
| RTK               | Receptor Tyrosine Kinase                                          |                                                 |
| SCF               | Stem Cell Factor Receptor                                         |                                                 |
| SHIP              | SH2-containing inositol 5-phosphatase                             |                                                 |
| SHP2              | Src-homology phosphatase type-2                                   |                                                 |
| SMI               | Small Molecule Inhibitor                                          |                                                 |
| SOCS-1            | Suppressor of cytokine signalling 1                               |                                                 |
| STAT              | Signal Transducer and Activator of Transcription                  |                                                 |
| ТАМ               | tumor-associated macrophages                                      |                                                 |
| Thr               | Threonine                                                         | Т                                               |
| TIE               | Tyrosine Kinase With Immunoglobulin-<br>like and EGF-like domains | Angiopoietin Receptors                          |

| ТМ    | Transmembrane Domain                           |      |
|-------|------------------------------------------------|------|
| Tyr   | Tyrosine                                       | Y    |
| Val   | Valine                                         | V    |
| VEGFR | Vascular Endothelial Growth Factor<br>Receptor | FLT1 |
| VHTS  | Virtual High-Throughput Screening              |      |
| VS    | Virtual Screening                              |      |

### List of publications

- 1. The results of Chapter 5 were already published in this paper: Mashkani, B., Griffith, R. & Ashman, L.K. (2010) Colony stimulating factor-1 receptor as a target for small molecule inhibitors. Bioorg Med Chem, 18, 1789-1797.
- 2. The results of Chapter 6 is under preparation as a paper entitled: Structure-activity relationship of small molecule inhibitors for FMS-Like Tyrosine Kinase 3 (FLT3)

#### **Conferences Abstracts**

Baratali Mashkani, Renate Griffith, Leonie Ashman Small Molecule Inhibitors of Colony Stimulating Factor-1 Receptor 7th AFMC International Medicinal Chemistry Congress - August 23-27, 2009 in Cairns, QLD, Australia